

Rev. V1

Features

- GaN on Si HEMT D-Mode Transistor
- · Suitable for linear and saturated applications
- Tunable from DC 6 GHz
- 28 V Operation
- 9 dB Gain at 5.8 GHz
- 45% Drain Efficiency at 5.8 GHz
- 100% RF Tested
- Thermally-Enhanced 4 mm 24-Lead QFN
- RoHS* Compliant

The MAGX-011086 GaN HEMT is a wideband transistor optimized for DC - 6 GHz operation in a user friendly package ideal for high bandwidth applications. The device has been designed for saturated and linear operation with output power levels of 4 W (36 dBm) in an industry standard, low inductance, surface mount QFN package. The pads of the package form a coplanar launch that naturally absorbs lead parasitics and features a small PCB outline for space constrained applications.

The MAGX-011086 is ideally suited for Wireless LAN, High Dynamic Range LNA's, broadband general purpose, land mobile radio, defense communications, wireless infrastructure, and ISM applications.

Built using the SIGANTIC® process - a proprietary GaN-on-Silicon technology.

Ordering Information

Part Number	Package
MAGX-011086	Bulk Quantity
MAGX-011086-SMBPPR	Sample Board

 Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Functional Schematic

Pin Configuration¹

Pin No.	Pin Name	Function	
1 - 2	N/C	No Connection	
3 - 4	RF_{IN} / V_{G}	RF Input / Gate	
5 -14	N/C	No Connection	
15 - 16	RF_{OUT} / V_D	RF Output / Drain	
17 - 24	N/C	No Connection	
25	Paddle ²	Ground / Source	

- 1. All no connection pins may be left floating or grounded.
- The exposed pad centered on the package bottom must be connected to RF and DC ground and provide a low thermal resistance heat path.

MAGX-011086

GaN Wideband Transistor 28 V, 4 W DC - 6 GHz

Rev. V1

RF Electrical Specifications: $T_A = 25$ °C, $V_{DS} = 28$ V, $I_{DQ} = 50$ mA

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 5.8 GHz	Gss	-	11	-	dB
Saturated Output Power	CW, 5.8 GHz	P _{SAT}	-	37	-	dBm
Drain Efficiency at Saturation	CW, 5.8 GHz	h _{SAT}	-	50	-	%
Power Gain	5.8 GHz, P _{OUT} = 4 W	G_{P}	8	9	-	dB
Drain Efficiency 5.8 GHz, P _{OUT} = 4 W		h	40	45	-	%
Ruggedness: Output Mismatch	All phase angles	Υ	VSWR = 10:1, No Device Damage		amage	

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	$V_{GS} = -8 \text{ V}, V_{DS} = 100 \text{ V}$	I _{DLK}	ı	-	2	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	1	mA
Gate Threshold Voltage	V_{DS} = +28 V, I_{D} = 2 mA	V _T	-2.5	-1.5	-0.5	V
Gate Quiescent Voltage	V_{DS} = +28 V, I_{D} = 50 mA	V_{GSQ}	-2.1	-1.2	-0.3	V
On Resistance	$V_{DS} = +2 \text{ V}, I_{D} = 15 \text{ mA}$	R _{ON}	-	2.0	-	W
Saturated Drain Current	V _{DS} = 7 V, Pulse Width 300 μs	I _{D(SAT)}	-	1.4	-	А

Rev. V1

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Max.		
Drain-Source Voltage, V _{DS}	100 V		
Gate-Source Voltage, V _{GS}	-10 V to 3 V		
Gate Current, I _G	4 mA		
Junction Temperature, T _J	+200°C		
Operating Temperature	-40°C to +85°C		
Storage Temperature	-65°C to +150°C		

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation near these survivability limits.
- 5. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10^6 hours.

Thermal Characteristics^{6, 7}

Parameter	Test Conditions	Symbol	Тур.	Units
Thermal Resistance	V_{DS} = 28 V, T_{J} = 200°C	Θ _{JC}	12.5	°C/W

^{6.} Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.

^{7.} The thermal resistance of the mounting configuration must be added to the device \(\theta_{JC}\), for proper \(T_J\) calculation during operation. The recommended via pattern, shown on page 6, on a 20 mil thick, 1oz plated copper, PCB contributes an additional 6.6 °C/W to the typical value.

Rev. V1

Load-Pull Performance: V_{DS} = 28 V, I_{DQ} = 50 mA, T_A = 25°C

Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Frequency (MHz)	Z _s (W)	Z _L (W)	P _{SAT} (W)	G _{SS} (dB)	Drain Efficiency @ P _{SAT} (%)
900	4.0 + j8.4	31.9 + j41.2	5.8	24.6	65
2500	4.0 - j13.1	12.5 + j18.0	5.1	19.5	63
3500	6.8 - j26.8	10.1 + j9.3	5.0	16.0	57
4000	13.4 - j37.8	9.5 + j4.7	5.0	15.3	56
5000	67.4 - j33.2	8.2 + j1.2	5.0	13.8	55
5800	19.4 + j0.5	7.7 - j8.4	5.0	12.0	55

Impedance Reference

Z_S and Z_L vs. Frequency

Rev. V1

Load-Pull Performance: V_{DS} = 28 V, I_{DQ} = 50 mA, T_A = 25°C Reference Plane at Device Leads, CW Drain Efficiency and Output Power Tradeoff Impedance

Gain vs. Output Power

Drain Efficiency vs. Output Power

Gain vs. Output Power

Drain Efficiency vs. Output Power

Rev. V1

Evaluation Board and Recommended Tuning Solution

5.8 GHz Narrowband Circuit

Description

Parts measured on evaluation board (20-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing

Turning the device ON

- 1. Set V_{GS} beyond pinch-off (V_P), typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to V_P.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

Recommended Via Pattern (All dimensions shown as inches)

Rev. V1

Evaluation Board and Recommended Tuning Solution

5.8 GHz Narrowband Circuit

Parts list

Reference	Value	Tolerance	Manufacturer	Part Number
C1, C5	1.0 µF	10 %	AVX	12101C105KAT2A
C2, C6	0.1 μF	10 %	Kemet	C1206C104K1RACTU
C3, C7	0.01 μF	10 %	AVX	12061C103KAT2A
C4, C8	1000 pF	10 %	Kemet	C0805C102K1RACTU
C9	4.7 pF	0.1 pF	ATC	ATC800A4R7B250
C10, C11, C12, C16	3.3 pF	0.1 pF	ATC	ATC800A3R3B250
C13	0.2 pF	0.1 pF	ATC	ATC800A0R2B250
C14	0.5 pF	0.1 pF	ATC	ATC800A0R5B250
C15	1.2 pF	0.1 pF	ATC	ATC800A1R2B250
C17	0.3 pF	0.1 pF	ATC	ATC800A0R3B250
R1	200 Ω	1 %	Panasonic	ERJ-6ENF2000V
RF Connector	SMA		Amphenol-Connex	132150
DC Connector	D-Subminiature		ERNI	284525
PCB	RO4350		Rogers Corp	

Rev. V1

Typical Performance as measured in the 5.8 GHz evaluation board: CW, V_{DS} = 28 V, I_{DQ} = 50 mA (unless noted)

Gain vs. Output Power over Temperature

Drain Efficiency vs. Output Power over Temperature

Quiescent V_{GS} vs. Temperature

Rev. V1

Typical 2-Tone Performance as measured in the 5.8 GHz evaluation board: 1 MHz Tone Spacing, V_{DS} = 28 V, I_{DQ} = 50 mA, T_A = 25°C (unless noted)

2-Tone IMD3 vs. Output Power vs. Quiescent Current

2-Tone Gain vs. Output Power vs. Quiescent Current

2-Tone IMD vs. Output Power

Rev. V1

Lead Free 4 mm 24 Lead QFN Plastic Package[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Sn